
3 The fundamentals: Algorithms, the integers, and

matrices

3.4 The integers and division

This section introduces the basics of number theory (number theory is the part of
mathematics involving integers and their properties).

1. a|b if b = a k, for some integer k (note that a|b is not the fraction b/a, but it
rather shows that a is a factor of b)

2. a 6 |b if a is not a factor of b. Examples: 3|18 but 3 6 | 20.

3. properties of a|b: (you should be able to prove them) Let a, b, c ∈ Z. Then:

• (a|b ∧ a|c) → a|(b + c)

• a|b → a|(bc), ∀c ∈ Z

• (a|b ∧ b|c) → a|c

• (a|b ∧ a|c) → a|(mb + nc), ∀m, n ∈ Z

4. Division algorithm: ∀a, d ∈ Z, with d > 0 ⇒ ∃! q, r (0 ≤ r < d) such that
a = dq + r

5. in the equation above, a is called the dividend, d is the divisor, q is the quotient,
and r is the remainder. Note that a and d are the given integers, and q and r are
the unique two integers that make the division algorithm work for the given a and
d. Example: Given 14 and 5, find the quotient and the remainder: 14 = 5 · 2+4,
so q = 2 and r = 4 and they are unique for the pair of numbers 14 and 5. We
then have that 2 = 14 div 5 and 4 = 14 mod 5

6. a mod m gives the reminder when a is divided by m

7. modular arithmetics: a ≡ b(mod m) ⇐⇒ m|(a − b). This means that both a
and b have the same reminder when they are divided by m.
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8. modular arithmetics: a 6≡ b(mod m) ⇐⇒ m 6 | (a− b)
Example: 14 ≡ 4(mod 5) since 5|(14− 4),
however 14 6≡ 2(mod 5) since 5 6 | (14− 2)

9. Theorem: a ≡ b(mod m) iff a mod m = b mod m (note that when (mod m) is in
the equation, then we use the symbol ≡, but if we use the mod m, then we use
the symbol = since we’re talking about remainders.)

10. modular arithmetic operations:

• addition:
(
a mod m + b mod m

)
mod m = (a + b) mod m

• subtraction:
(
a mod m− b mod m

)
mod m = (a− b) mod m

• multiplication:
(
a mod m · b mod m

)
mod m = (a · b) mod m

11. not true for division (division is not defined for modular arithmetic. We de-
fine cancellation, and one can only cancel if the number that one cancels by is
relatively prime to m–see Section 3.7)

12. if a ≡ b(mod m) and c ≡ d(mod m), then

• a + c ≡ b + d (mod m)

• a− c ≡ b− d (mod m)

• a · c ≡ b · d (mod m)

• aα ≡ bα (mod m), for α > 0, m ≥ 2, α ∈ Z
• aα ≡ bα (mod mα), for α > 0, m ≥ 2, α ∈ Z

13. Applications: hashing functions, pseudo random numbers, code generating in
cryptography

3.5 Primes and greatest common divisors

1. a prime p is an integer greater than 1 whose only positive factors are 1 and p
(note that 2 is the smallest prime number, and the only even prime number). If
an integer greater than 1 is not prime, then it is a composite number. Note that
only integers that are greater than or equal to 2 are either primes or composite.
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2. if n is a composite integer, then n has prime divisors less than or equal to
√

n (so
in searching for divisors in a factorization of n, one should only look up to

√
n)

3. Fundamental Theorem of Arithmetic: every positive integer greater than 1 can
be uniquely written as product of primes (where the factors are arranged in an
increasing order)
i.e.: n = p1 · p2 · . . . · pα, where pi ≤ pi+1 for 1 ≤ i ≤ α− 1

4. there are infinitely many primes (look at the construction in the proof)

5. The prime number theorem: The ratio of the number of primes not exceeding x
and x

ln x
approaches 1 as x →∞. Proof is complicated, but its usefulness comes

in estimating the odds of choosing a random number that is prime.

6. gcd of two numbers = greatest common divisor: gcd(12, 30) = 6

7. lcm of two numbers = least common multiple: lcm(12, 30) = 60

8. a and b are relatively prime (or also called coprimes) if gcd(a, b) = 1:
The numbers 7 and 9 are relatively prime

9. the integers a1, a2, . . . , an are pairwise relatively prime if all pairs of them are
relatively prime (i.e. gcd(ai, aj) = 1,∀i, j with 1 ≤ i 6= j ≤ n).

10. ab = gcd (a, b)· lcm(a, b)

3.6 Integers and algorithms

This section presents techniques for transforming numbers from one base to another.

1. Base b expansions of n: n = akb
k + ak−1b

k−1 + . . . + a1b + a0

2. Example: 237 in decimal representation is 237 = 2 · 102 + 3 · 101 + 7 · 100 and 9
in binary is 9 = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 23 + 20

3. Binary (base 2) expansions integers are bit strings that represent the particular
integers, and they are used by computers to represent and do arithmetic with
integers

4. Hexadecimal expansion of also used by computer. It uses 0, 1, . . . , 9, A,B,C, D, E, F

5. Bytes are bit strings of length 8
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6. Base conversion (expressing n base b):

• n = bq0 + a0 (0 ≤ a0 < b) and a0 is the rightmost digit of n base b

• q0 = bq1 + a1 (0 ≤ a1 < b) and a1 is the 2nd digit from the right of n base b

• repeat to find a2, a3, . . . until qi = 0 for some i

7. converting from binary to hexadecimal: each hexadecimal digit corresponds to a
block of 4 digits

8. binary addition: let a = (an−1an−2 . . . a1a0) and b = (bn−1bn−2 . . . b1b0). Then

• a + b is found using the usual method of adding two numbers modulo 2

• ab = a(
∑n−1

i=0 2i) =
∑n−1

i=0 a2i, where multiplying a by 2i is adding i zeros at
the end of a (i.e.101×23 = 101000) (look at the example on top left of page
225)

9. Euclidean Algorithm: gives an alternative way to find the gcd of two numbers
without using the prime factorization of the two numbers.

3.7 Applications of number theory

1. writing the gcd(a, b) = d as a linear combination d = αa + βb, for some α, β ∈ Z

2. if a and b are relatively prime, then 1 = αa + βb, for some α, β ∈ Z

3. if p is a prime such that p|(a1 · a2 · . . . · an), then p|ai for some i (1 ≤ i ≤ n)

4. simplifications: if a, b, c, m ∈ Z (m > 0) and gcd(c, m) = 1, then

ac ≡ bc(mod m) ⇒ a ≡ b(mod m)

5. however, if gcd(c, m) 6= 1, the above result doesn’t hold (see Example 2 page 234)

6. linear congruence: ax ≡ b(mod m) (where a, b, m ∈ Z (m > 0) and x is the
variable)

7. a (or a−1) is the inverse of a modulo m if aa ≡ 1(mod m)

8. Chinese Remainder Thm (solving systems of linear congruences): for relatively
prime numbers mi, the system
x ≡ a1 mod m1
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x ≡ a2 mod m2

...

x ≡ an mod mn

has unique solution modulo m =
n∏

i=1

mi, namely

x = a1M1y1 + a2M2y2 + . . . + anMnyn,

where Mi = m
mi

, and yi is the inverse of Mi modulo mi

9. Fermat’s Little Thm: If p is a prime, and p 6 |a, then ap−1 ≡ 1 mod p
(or for any prime p, ap ≡ a mod p).

10. the converse of Fermat’s Little Thm doesn’t hold since there are some compos-
ite numbers n called pseudoprimes, such that in the form an−1 ≡ 1 mod n, for
example n = 341.
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